
XineLam

Description:

RX-BKT57-56040, LED module - Ideal for linear and panel lights. WAGO2060 Terminal Block, very easy to connect and remove the conductors. Perfectly uniform light, even if several LED modules are used together in a line. LED Line systems are designed to produce pure white light for general lighting applications with high efficiency level, surpassing T5. For a variety of lighting.

Technical Data:

Part Number	Dimensions	CCT	LED	Luminous	Forward	Test	Power	Efficacy	Тср
	Net weight		QTY	flux Typ	VoltageTyp	Current	Тур	Тур	Test
RX-BKT57-56040-CW		6000~6500K		2200Lm	33.7V	500mA	16.8W	131Lm/W	50°C
				2500Lm	34.5V	600mA	20.7W	121Lm/W	52°C
RX-BKT57-56040-NW	90g	3800~4250K	11s 4p	2268Lm	33.7V	500mA	16.8W	135Lm/W	50°C
			44pcs	2580Lm	34.5V	600mA	20.7W	125Lm/W	52°C
RX-BKT57-56040-WW		0000 00001/		2180Lm	33.7V	500mA	16.8W	130Lm/W	50°C
		2800~3200K		2480Lm	34.5V	600mA	20.7W	120Lm/W	52°C

Note: Beam characteristic120 °, Ripple max. 15 % of typ. forward current; Max. permissible surge current: 1 A, duration max. 10 µs Tolerance range for optical and electrical data: ±10 %.

LED module - Ambient Light Engine - LED Line 2 ft 2200Lm 560x40mm

MODEL: RX-BKT57-56040

Thermal Characteristics

Http: www.xinelam.com

-30 ~ +85°C

-30 ~ +85°C

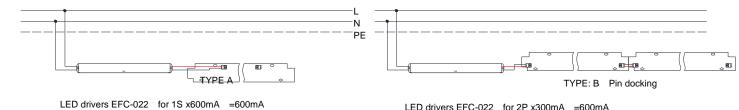
85°C

Maximum Rated Values

Part Number	Forward Current	Forward Voltage		
RX-BKT57-56040	700mA	35.2V@700mA		

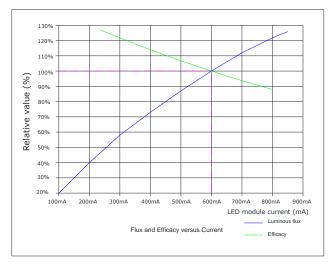
Part Numbering

RX-BKT	- <u>57</u>	- <u>XXXX</u>	- <u>XX</u>
	LED	PCB Size	Photometic Code
	Model		CW6000~6500K
			NW3800~4250K
			WW2800~3200K

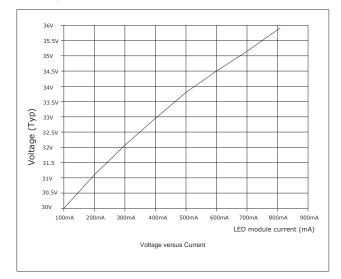

Standard Driver Options 100% No flicker

nelam

	Low brightness	High brightness
EFC-15D-420mA	1S 33.2V@420mA	
EFC-15D-42011A	1930Lm AC 15W PF0.9	
EEC 022 600mA	2P 32.1V@300mA x2	
LT C-022-000IIIA	2600Lm AC 22W PF0.9	2580Lm AC 23W PF0.9
HLG-40H-36	4P 31.7V@280mA x4	2P 34.2V@560mA x2
1120-401-50	4930Lm AC 40W PF0.9	4780Lm AC 42W PF0.9


Where 1S = 1 Module, 4P is 4 Module in parallel etc; Power includes drivers consumption

For example: EFC-022-600mA drive of 2pcs parallel 300mA modules or 1pcs 600mA modules



LED drivers EFC-022 for 2P x300mA =600mA

Flux and Efficacy versus Current

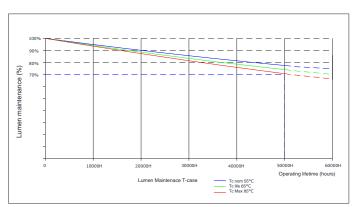
Voltage versus Current

Storage Temperature, TSTG

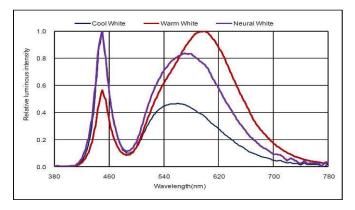
Operating Temperature, Top

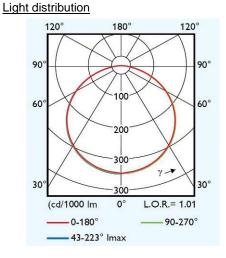
Max. Solder Point Temp., Tcp

MODEL: RX-BKT57-56040


Http: www.xinelam.com

Flux and Efficacy versus Temperature at Tc


Xinelam



Lumen Maintenace T-case

Relative spectral emission

Heat sink values

Ambient Temperature Ta	Reference point Tp	Forward current	Rth, hs-a	Cooling area
25 °C	50 °C	500mA	self cooling	
35 °C	60 °C	500mA	self cooling	
45 °C	65 °C	500mA	1.2K/W	525 cm ²
55 °C	65 °C	500mA	0.37K/W	1792 cm ²
25 °C	52 °C	600mA	self cooling	
35 °C	62 °C	600mA	self cooling	
45 °C	65 °C	600mA	0.95K/W	658 cm ²
55 °C	65 °C	600mA		

Thermal design and heat sink

The rated life of products depends to a large extent on the temperature. If the permissible temperature limits are exceeded, the life of the module will be greatly reduced or the module may be destroyed.

Tc point, ambient temperature and lifetime

The temperature at tp reference point is crucial for the light output and life time

For module a tp temperature of 65 °C has to be complied in order

to achieve an optimum between heat sink requirements, light output and life time.

Compliance with the maximum permissible reference temperature at the tc point. must be checked under operating conditions in a thermally stable state. The maximum value must be determined under worst-case conditions for the relevant application.

The tc and tp temperature of LED modules from are measured at the same reference point (Tcp)

<u>Notes</u>

The actual cooling surface can differ because of the material, the structural shape, outside influences and the installation situation. Depending on the heat sink a heat conducting paste or heat conducting film might be necessary to keep the specified tp temperature.

MODEL: RX-BKT57-56040 Http: ww

Http: www.xinelam.com

Mounting instruction

None of the components of the umodule (substrate, LED, electronic components etc.) may be exposed to tensile or compressive stresses.

Max. torque for fixing: 0.5 Nm.

The LED modules are mounted with min. 2 screws per module. In order not to damage the modules only rounded head screws and an additional plastic flat washer should be used.

Precautions In Handling

1, LED Lighting for white light are devices which are materialized by combining white LEDs. The color of white light can differ a little unusually to diffuser plate(sign-board panel).

2, Handling

Don't drop the unit and don't give the unit any shocks.

Don't storage the Module in a dusty place or room.

Don't take the unit to pieces.

3, Cleaning

This LED Module should not be used in any type of fluid such as oil, organic solvent, etc.

It is recommended that IPA(Isopropyl Alcohol) be used as a solvent for cleaning the LED Module.

When using other solvents, it should be confirmed beforehand whether the solvents will dissolve the package and the resin or not. Freon solvents should not be used to clean

the LEDs because of worldwide regulations. Do not clean the LED Module by the ultrasonic.

Before cleaning, a pre-test should be done to confirm whether any damage to the LED Lighting will occur.

4, Static Electricity

Static electricity or surge voltage damages the LED Lighting.

5, Discoloration

VOCs (volatile organic compounds) may be occurred by adhesives, flux, hardener or organic additives which is used in luminaires (fixture) and LED silicone bags are permeable to it. It may lead a discoloration when LED expose to heat or light.

This phenomenon can give a significant loss of light emitted(output) from the luminaires(fixtures). In order to prevent these problems, we recommend you to know the physical properties for the materials used in luminaires, it requires to select carefully.

5, Risk of Sulfurization (or Tarnishing)

The lead frame is a plated package and it may change to black. (or dark colored) when it is exposed to Ag (a), Sulfur (S), Cchlorine (CI) or other halogen compound. It requires attention.

Sulfide (Sulfurization) of the lead frame may cause a change of degradation intensity, chromaticity coordinates and it may cause open circuit in extreme cases. It requires attention.

Sulfide (Sulfurization) of the lead frame may cause of storage and using with oxidizing substances together. Therefore, LED is not recommend to use and store with the

below list.: Rubber, Plain paper, lead solder cream etc.

6, Others

If over voltage which exceeds the absolute maximum rating is applied to LED Lighting,

it will cause damage Circuits(that LED is included) and result in destruction.

Do not directly look into lighted LED with naked eyes for long time.